
Imperfect Code Generation: Uncovering Weaknesses in
Automatic Code Generation by Large Language Models

Xiaoli Lian, Shuaisong Wang, Jieping Ma, Xin
Tan, Fang Liu, Lin Shi, Li Zhang
SKLSDE, Beihang University, China

{lianxiaoli,littletree,19373733,xintan,fangliu,shilin,lily}@buaa.edu.cn

Cuiyun Gao
Harbin Institute of Technology, China

gaocuiyun@hit.edu.cn

Abstract
The task of code generation has received significant attention in re-
cent years, especially when the pre-trained large language models
(LLMs) for code have consistently achieved state-of-the-art per-
formance. However, there is currently a lack of a comprehensive
weakness taxonomy in the field, uncovering weaknesses in auto-
matic code generation by LLMs. This may lead the community to
invest excessive efforts into well-known hotspots while neglecting
many crucial yet unrecognized issues that deserve more attention.
To bridge this gap, we conduct a systematic study on analyzing
the weaknesses based on three state-of-the-art LLMs across three
widely-used code generation datasets. Our study identifies eight
types of weaknesses and assesses their prevalence across each LLM
and dataset, aiming to inform and shape the trajectory of future
research in the domain.

ACM Reference Format:
Xiaoli Lian, Shuaisong Wang, Jieping Ma, Xin Tan, Fang Liu, Lin Shi, Li
Zhang and Cuiyun Gao. 2024. Imperfect Code Generation: Uncovering
Weaknesses in Automatic Code Generation by Large Language Models.
In 2024 IEEE/ACM 46th International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion ’24), April 14–20, 2024, Lisbon,
Portugal.ACM, NewYork, NY, USA, 2 pages. https://doi.org/10.1145/3639478.
3643081

1 Introduction
Automatic code generation has emerged as a pivotal technology
in the field of software development, with the potential to reduce
errors associated with manual coding and drastically improve pro-
ductivity. In recent years, a range of sophisticated models have
emerged, including sequence-based, tree-based, and pre-trained
code generation models, evolving at an extraordinary pace. State-
of-the-art (SOTA) code generation models, especially those derived
from pre-trained large languagemodels (LLMs), have shown promis-
ing results in producing source code across various programming
languages and tasks.

Despite these achievements, there are instances where these
models either fail or underperform. To this end, more intricate and
life-like benchmarks have been introduced, and rigorous evalua-
tions have been carried out. Although the efficacy of LLMs has
undergone extensive assessment, there remains an absence of a
comprehensive taxonomy of their weaknesses. This oversight could
inadvertently lead the research community to focus predominantly
on familiar challenges, leaving critical but less explored issues
under-researched and lacking adequate scrutiny.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0502-1/24/04. . . $15.00
https://doi.org/10.1145/3639478.3643081

In this study, we aim to uncover the weaknesses in automatic
code generation by conducting an in-depth analysis of the problem-
atic codes produced by three SOTA LLMs across three widely-used
datasets. Finally, we identified eight distinct types of weaknesses.
From the perspective of benchmarks, we found that some problem-
atic code generated are associated with inaccurate prompts (Type
I) or overly complex (Type II). Besides, some weaknesses represent
false negatives, a result indicative of biases toward single-answer
solutions (Type III). Additionally, we observed model-related weak-
nesses where code generation failed to capture essential prompt
semantics (Type IV), exhibited incorrect API usage (Type V), im-
properly applied domain knowledge (Type VI), produced more code
than necessary (Type VII), or redundantly duplicated code snippets
(Type VIII). We mapped the distribution of these weaknesses across
the LLMs, aiming to highlight the extent to which different types of
weaknesses predominate within each model for each benchmark.

To the best of our knowledge, we are the first to systematically
analyze the weaknesses of code generation from a comprehensive
perspective of benchmarks and the employed models. Our findings
illuminate the spectrum of weakness distributions and call for an
immediate increase in investment towards more nuanced research.
This includes the crafting of benchmarks that offer API-diverse so-
lutions, refined semantic representation of prompts, and strategies
to mitigate ‘gold plating’ issues, leveraging either sophisticated
LLMs or advanced code truncation techniques.

2 Research Subjects
Models: CodeGen2.5 (7B) [2] is a multi-turn program synthesis
model. The new paradigm of human-in-the-loop makes that it
is competitive with the SOTAs. CodeGeeX2 (6B) [3] is a state-
of-the-art, multilingual code-generation model. GPT-4, OpenAI’s
latest generative model, is regarded as one SOTA model in various
domains, including code synthesis.
Datasets:We choose two types of datasets based on their evalua-
tion methods: match-based evaluation (i.e., CoNaLa) and unit-test-
based (i.e., HumanEval+ and DS-1000). All of them are common
used in code-generation research.
Metrics: We select one match-based (i.e., Exact match (EM)) and
one (unit-test) execution-based metric (i.e.,pass@1), to evaluate
the quality of generated source code.
Case Selection and Annotation. For valid annotation with a
95% confidence interval, we randomly selected the required sample
size: 339 for CoNaLa, 115 for HumanEval+, and 277 for DS-1000.
To develop a taxonomy of weaknesses, we curated a selection of
code instances generated by the LLMs with an EM score of less
than 1 for CoNaLa, or a pass@1 below 1 for HumanEval+ and DS-
1000 datasets. Subsequently, we employed thematic analysis [1]
to meticulously examine these problematic samples. Our team of
annotators comprised eight CS majors, including one lecturer, one
PhD candidate, and six postgraduate students.

As a preliminary step, the first three authors independently ana-
lyzed 33 random problematic cases from CoNaLa in a pilot study,

422

2024 IEEE/ACM 46th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)

https://doi.org/10.1145/3639478.3643081
https://doi.org/10.1145/3639478.3643081
https://doi.org/10.1145/3639478.3643081
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3639478.3643081&domain=pdf&date_stamp=2024-05-23

ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal Xiaoli Lian, Shuaisong Wang, Jieping Ma, Xin Tan, Fang Liu, Lin Shi, Li Zhang and Cuiyun Gao

which led to the identification of an initial set of six weakness cate-
gories. These categories were derived by comparing the prompts,
reference code, and responses generated by the three LLMs. A train-
ing session was then conducted to familiarize the annotators with
the initial category before commencing the annotation tasks: four
annotators focused on CoNaLa, two on HumanEval+, and four
on DS-1000. Each annotator worked independently. Upon receiv-
ing the results, one of the leading authors joined to form a triad
with two others for joint discussions to resolve any discrepancies.
This collaborative review process resulted in the discovery of two
additional types of weaknesses.

3 Weakness taxonomy
In this section, we introduce each of the weakness types, and list
the weakness ratio of each PLM in each benchmark in Table 1.
I: Inaccurate prompts. If the prompt cannot describe the intent
accurately, LLMs are almost impossible to generate the accurate
source code. There are three sub-types. a) I.i. Vagueness implies the
existence of multiple interpretations for a single prompt. As a re-
sult, different models may produce varied responses based on their
unique understanding. b) I.ii. Incompleteness. Sometimes, the prompt
does not encompass all essential details found in the reference code
and required for clear intent. Generally overlooked elements in-
clude critical parameters (such as a specific string instance), the
storage constraint of outcomes, as well as routine operations. c)
I.iii. Inconsistency. We identified some cases in which prompts may
display inconsistencies, or they may even conflict with the refer-
ence code provided. This can cause difficulties for LLMs that rely
on clear and coherent prompts to accurately generate the intended
source code solutions.
II: Too complex prompts. Intuitively, if prompts are excessively
challenging to comprehend, it becomes increasingly difficult for
LLMs to generate correspondingly high-quality source code. Dur-
ing our annotation process, an annotator deems a prompt as overly
complex when: 1) repeated reading is necessary to grasp its mean-
ing; or 2) it involves several intertwined steps; or 3) understanding
the prompt requires specific domain knowledge; or 4) it has convo-
luted sentence structures (more subordinate clauses and preposi-
tional phrase). If both annotators agree on the high complexity of a
prompt, we label it as ‘too complex’. This weakness is more serious
in DS-1000.
III: Biases from single answer. This weakness is particularly
evident in benchmarks that do not include test cases. For any given
prompt, multiple valid implementations may exist. Yet, most cur-
rent public benchmarks provide only one reference code snippet
for each prompt. This implies that while the generated source code
might differ from the provided solution, it could still be correct.
Unfortunately, match-based evaluation methods do not accommo-
date such variability and are highly sensitive to any discrepancies.
Consequently, biases stemming from reliance on single-answer ref-
erences are introduced. In the case of CoNaLa, our analysis reveals
that 43.66% of the answers generated by GPT-4, which were deemed
problematic by CodeBLEU, are actually false negatives. Similarly,
for CodeGeeX2 and CodeGen2.5, the proportions of falsely negative
evaluations stand at 32.15% and 23.01%, respectively, as in Table 1.
IV. Missing pivotal semantics. Critical information within a
prompt, such as specific constraints or formatting requirements, is
sometimes absent in the code generated by PLMs, highlighting a
lapse in capturing pivotal semantic details. For instance, CoNaLa-
13567345 explicitly instructs to “calculate sum over all rows of a
2D numpy array.” However, CodeGen2.5 and GPT-4 erroneously
compute the sum across columns. And CodeGeeX2 aggregates the
entire array’s elements instead of summing each row individually.

According to Table 1, this type of omission is most prevalent
among the three LLMs, denoted in bold (with the exception of GPT-
4 on CoNaLa). A consistent trend emerges across all three models:
the more complex the prompt, the greater the severity of this issue.
In DS-1000, featuring the lengthiest prompts at an average of 137.01
tokens, the frequency of this weakness is highest. It is the second-
highest in HumanEval+ with an average prompt length of 67.72
tokens, and it is least common in CoNaLa, which has the shortest
prompts, averaging 10.06 tokens.
V. Wrong API usage. This weakness relates to the improper ap-
plication of an existing API—using correct API names but with
incorrect parameters—or invoking nonexistent APIs, both indica-
tive of a type of syntactic error. It is important to note that scenarios
where incorrect APIs are utilized correctly yet fail to address the
task described in the prompt do not fall into this category.

GPT-4 exhibited the fewest related instances, while CodeGeeX2
displayed the most. Conversely, we found no occurrences of this
weakness in the outputs from HumanEval+, which could be attrib-
uted to smaller sample sizes and the higher quality of its prompts.
VI. Lack of domain knowledge. The problems of generated code
are in the wrong usage or missing some common knowledge in cer-
tain areas. For instance, when generating source code for the prompt
of “loop through the IP address range "192.168.x.x"”(CoNaLa-13368659
), CodeGen2.5 wronly iterates the required two numeric segments
in the range of (1025, 65535), and CodeGeeX2 in the range of (1,255).
VII. Gold plating. We use the term “gold plating” metaphori-
cally to describe instances where an LLM produces code that is
more elaborate or intricate than necessary to meet the specified
prompt. We believe this issue is well-recognized, since numerous
studies adopt truncation strategies for refining the generated out-
put. However, these strategies are often too generalized to discern
all vital information. This kind of weakness was observed from the
generated code in CoNaLa and DS-1000 by all of the three models.
VIII. Code duplication. This weakness is identified from the
generated code of CodeGen2.5 and CodeGeeX2. These models oc-
casionally produce redundant code in response to certain prompts,
where the repetition may or may not be pertinent to the given task.

Table 1: Weakness Distribution Across Each PLM (%).

Model Dataset Weakness Types
I II III IV V VI VII VIII

GPT-4
CoNaLa 27.14 0.88 43.66 8.85 0.59 1.18 5.60 0.00
HumanEval+ 0.00 0.00 0.00 42.11 0.00 2.63 0.00 0.00
DS-1000 8.47 7.41 0.00 55.56 1.59 0.00 1.59 0.00

CodeGeeX2
CoNaLa 27.14 1.18 32.15 39.82 2.36 2.65 10.62 4.13
HumanEval+ 0.00 0.00 0.00 73.71 0.00 3.66 0.00 1.22
DS-1000 6.51 7.91 0.00 77.21 6.51 0.00 2.33 0.47

CodeGen2.5
CoNaLa 27.43 0.88 23.01 54.28 2.36 2.06 8.55 0.00
HumanEval 0.00 0.00 0.00 68.13 0.00 2.20 0.00 0.00
DS-1000 6.90 6.51 0.00 75.48 2.30 0.00 4.21 0.77

4 Acknowledgment
Funding for this work has been provided by the National Science
Foundation of China Grant NO. 62102014. It is also partially sup-
ported by the State Key Laboratory of Software Development Envi-
ronment No.SKLSDE-2023ZX-03.

References
[1] Virginia Braun and Victoria Clarke. 2022. Conceptual and design thinking for

thematic analysis. Qualitative Psychology 9, 1 (2022), 3.
[2] Erik Nijkamp, Bo Pang, and etc. 2022. Codegen: An open large language model for

code with multi-turn program synthesis. arXiv preprint arXiv:2203.13474 (2022).
[3] Qinkai Zheng, Xiao Xia, and etc. 2023. CodeGeeX: A Pre-Trained Model for Code

Generation with Multilingual Evaluations on HumanEval-X.

423

